网络遇见大数据:在大型静态数据集中恢复动态网络
导语
我们正身处于大数据时代,从基础物理学到生命以及社会科学,几乎所有学科都孕育出了体量巨大的数据集,数以千计的变量纠缠其中,隐藏着许多我们未曾发现的关系与自然法则。近日发表在 Physics Reports 的综述文章,介绍了一个从大型静态数据集中恢复动态网络的统一框架,为挖掘大数据中蕴含的深层次信息提供了一种新思路。
陈昊 | 作者
邓一雪 | 编辑
论文题目:
Recovering dynamic networks in big static datasets
论文地址:https://doi.org/10.1016/j.physrep.2021.01.003
论文题目:
Recovering dynamic networks in big static datasets
论文地址:https://doi.org/10.1016/j.physrep.2021.01.003
1. 网络遇见大数据
1. 网络遇见大数据
2. 将静态数据转换为动态表示的统一框架
2. 将静态数据转换为动态表示的统一框架
图1 从研究对象收集数据的采样策略 对象i(i=1,...,n)是对复杂系统的n次采样,由m=5个属性进行描述。
3. 静态网络的统计推断
3. 静态网络的统计推断
图2 GTEX-11EQ9中基因驱动的组织通信网络。图A为完整网络,由56200个基因驱动。图B为由DAZ1(总生态位最小的基因)驱动的网络。图C由MT-CO2驱动的网络。红色和蓝色分别代表促进和抑制,线的粗细与促进或抑制的强度成比例。
4. 跟踪网络的动态变化
4. 跟踪网络的动态变化
图3 基于特定样本的微生物相互作用网络 图A中的三个网络分别表示总生态位最小(Sample 1)、居中(Sample 90)、最大(Sample184)。图B为每个网络的六个网络参数:connectivity (Con), closeness (Clo), betweenness (Bet), eccentricity (Ecc), eigenvector (Eig) 和PageRank (PR)。图C为 49个微生物种群的名称。
图4 将针对特定样本的网络转化为针对特定季节(图A)、特定性别(图B)、特定年龄(图C)的网络
5. 总结
5. 总结
参考文献
[1] Townsend Peterson A, Soberón J, Pearson R G, et al. Ecological niches and geographic distributions[J]. Princeton UP, Princeton, 2011.
[2] Pereira F C, Berry D. Microbial nutrient niches in the gut[J]. Environmental microbiology, 2017, 19(4): 1366-1378.
[3] Busiello D M, Suweis S, Hidalgo J, et al. Explorability and the origin of network sparsity in living systems[J]. Scientific reports, 2017, 7(1): 1-8.
[4] Runge J. Causal network reconstruction from time series: From theoretical assumptions to practical estimation[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2018, 28(7): 075310.
[5] Dunbar R I M. Neocortex size as a constraint on group size in primates[J]. Journal of human evolution, 1992, 22(6): 469-493.
[6] Michailidis G, d’Alché-Buc F. Autoregressive models for gene regulatory network inference: Sparsity, stability and causality issues[J]. Mathematical biosciences, 2013, 246(2): 326-334.
[7] Zavlanos M M, Julius A A, Boyd S P, et al. Inferring stable genetic networks from steady-state data[J]. Automatica, 2011, 47(6): 1113-1122.
[8] Larvie J E, Sefidmazgi M G, Homaifar A, et al. Stable gene regulatory network modeling from steady-state data[J]. Bioengineering, 2016, 3(2): 12.
[9] GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans[J]. Science, 2015, 348(6235): 648-660.[10] Sreedharan J K, Magner A, Grama A, et al. Inferring temporal information from a snapshot of a dynamic network[J]. Scientific reports, 2019, 9(1): 1-10.
[11] Muldoon S F, Pasqualetti F, Gu S, et al. Stimulation-based control of dynamic brain networks[J]. PLoS computational biology, 2016, 12(9): e1005076.
[12] Kuijjer M L, Tung M G, Yuan G C, et al. Estimating sample-specific regulatory networks[J]. Iscience, 2019, 14: 226-240.
[13] Liu C, Zhao J, Lu W, et al. Individualized genetic network analysis reveals new therapeutic vulnerabilities in 6,700 cancer genomes[J]. PLoS computational biology, 2020, 16(2): e1007701.
[14] Wang Y, Cho D Y, Lee H, et al. Reprogramming of regulatory network using expression uncovers sex-specific gene regulation in Drosophila[J]. Nature communications, 2018, 9(1): 1-10.
[15] Davenport B, Li Y, Heizer J W, et al. Signature channels of excitability no more: L-type channels in immune cells[J]. Frontiers in immunology, 2015, 6: 375.
参考文献
[1] Townsend Peterson A, Soberón J, Pearson R G, et al. Ecological niches and geographic distributions[J]. Princeton UP, Princeton, 2011.
[2] Pereira F C, Berry D. Microbial nutrient niches in the gut[J]. Environmental microbiology, 2017, 19(4): 1366-1378.
[3] Busiello D M, Suweis S, Hidalgo J, et al. Explorability and the origin of network sparsity in living systems[J]. Scientific reports, 2017, 7(1): 1-8.
[4] Runge J. Causal network reconstruction from time series: From theoretical assumptions to practical estimation[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2018, 28(7): 075310.
[5] Dunbar R I M. Neocortex size as a constraint on group size in primates[J]. Journal of human evolution, 1992, 22(6): 469-493.
[6] Michailidis G, d’Alché-Buc F. Autoregressive models for gene regulatory network inference: Sparsity, stability and causality issues[J]. Mathematical biosciences, 2013, 246(2): 326-334.
[7] Zavlanos M M, Julius A A, Boyd S P, et al. Inferring stable genetic networks from steady-state data[J]. Automatica, 2011, 47(6): 1113-1122.
[8] Larvie J E, Sefidmazgi M G, Homaifar A, et al. Stable gene regulatory network modeling from steady-state data[J]. Bioengineering, 2016, 3(2): 12.
[9] GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans[J]. Science, 2015, 348(6235): 648-660.[10] Sreedharan J K, Magner A, Grama A, et al. Inferring temporal information from a snapshot of a dynamic network[J]. Scientific reports, 2019, 9(1): 1-10.
[11] Muldoon S F, Pasqualetti F, Gu S, et al. Stimulation-based control of dynamic brain networks[J]. PLoS computational biology, 2016, 12(9): e1005076.
[12] Kuijjer M L, Tung M G, Yuan G C, et al. Estimating sample-specific regulatory networks[J]. Iscience, 2019, 14: 226-240.
[13] Liu C, Zhao J, Lu W, et al. Individualized genetic network analysis reveals new therapeutic vulnerabilities in 6,700 cancer genomes[J]. PLoS computational biology, 2020, 16(2): e1007701.
[14] Wang Y, Cho D Y, Lee H, et al. Reprogramming of regulatory network using expression uncovers sex-specific gene regulation in Drosophila[J]. Nature communications, 2018, 9(1): 1-10.
[15] Davenport B, Li Y, Heizer J W, et al. Signature channels of excitability no more: L-type channels in immune cells[J]. Frontiers in immunology, 2015, 6: 375.
参考文献可上下滑动查看
网络科学新课推荐:网络动力学
集智学园特邀陈关荣、项林英、樊瑛、宣琦、李翔、史定华、李聪、荣智海、周进、王琳等网络科学专家作为导师,依托汪小帆、李翔、陈关荣的经典教材《网络科学导论》,自2月27日起开展系列上线课程,以网络动力学为主线构建网络科学知识体系。欢迎希望进入网络科学领域、提高网络分析能力、与一线专家探讨问题的朋友报名参加!
推荐阅读
点击“阅读原文”,追踪复杂科学顶刊论文